torus exceeds by practically a factor of two its value for a cylindrical explosion; the experimental results con-
firm the tendency toward an increase of the pulsation period upon an increase in the radius of the ring; and

d) according to the experimental data, as the radius of the ring decreases (with fulfiliment of the condition
of maintaining the toroidal nature of the cavity), the fraction of energy necessary for the shock wave increases
and amounts to practically 90% for a value a ;~150; as the radius of the ring increases, the energy balance ap-
proaches the data for an explosion with cylindrical symmetry.

The results presented for our investigations confirm the practicability of the method proposed in this
paper and the pulsation equation (2.5) obtained on this basis for a toroidal cavity in a compressible liquid.

The author is grateful to V. T. Kuzavov for.assistance in conducting the experiments.
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SHOCK STRUCTURE IN A LIQUID CONTAINING GAS
BUBBLES WITH NONSTEADY INTERPHASE HEAT TRANSFER

R. R. Aidagulov, N. S. Khabeev, UDC 532.529.5:533.6.011.72
and V. Sh, Shagapov

In this article the one-velocity, two-pressure model of a two-phase mixture [1] is used in conjunction with
the heat-conduction equation for the interior of bubbles in a bubble -liquid mixture to describe the structure of
a shock wave in such a mixture.

Shock waves in a liquid containing gas bubbles have been investigated theoretically and experimentally
[1-4]. The structure of a shock wave in such a medium has been studied with allowance for the compressibility
of the host phase as well as two-~velocity and two-temperature effects [5], and it has been shown in the same
work that in the case of thermal nonequilibrium the role of two-velocity effects becomes inconsequential against
the background of the much stronger thermal dissipation. In this connection the present discussion is framed
in the one-velocity model for simplification {6]. The objective of the present study is to refine the results of
[6] and to test the applicability of the fixed heat-transfer coefficient or Nusselt number determined from the
approximation of a thin thermal boundary layer to the case of nonsteady heat transfer between a pulsating bubble
and the host liquid.

§1. Fundamental Equations

We consider the motion of a liquid in which gas bubbles are suspended and for which the following basic
assumptions arc made [1}: 1) The distances over which the flow parameters experience any appreciable varia-
tion are much greater than the distances between bubbles, and the latter distances in turn are much greater
than the bubbles themselves (i.e., the contents by volume « , of the gas phase are small, o 5,< 0.1); 2) the mixture
is monodisperse, i.e., in every elementary volume all the bubbles are spherical and have the same radius R;

3) viscosity and heat conduction are essential only in interphase processes and, in particular, during bubble
pulsations.
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Moreover, it is assumed that zero mass transfer takes place between phases and the temperature T of
the liquid (unlike the temperature of the gas in the bubble interior) is constant. The latter condition (T, =
const) is always satisfied for not too high pressures, on account of the predominant mass content of the liquid
(which functions as a thermostat), and simplifies the problem greatly because it obviates the need to analyze
the energy equation for the liquid. '

Calculations have shown [7] that even for very strong bubble compression (pg/py~ 10), such that the
center of the bubble attains high temperatures (of the gas), the temperature T of the bubble surface increases
only slightly (T, ~ 1.1 Ty). Thepressure in the bubble in this case attains values very much greater than the
partial vapor-saturation pressure corresponding to such values of the bubble surface temperature. This fact
lends support to the assumption of inconsequential interphase mass transfer.

For the given mixtufe, working within the notions of continuum theory and following Noordzij [1], we
write the differential equations for the conservation of mass of each phase and conservation of momentum of
the total mixture in one-dimensional, steady-state motion:

dp)dz = 0, d{pw)ldz = 0, (1.1)

pi=pia;, i=1,2, o+ x, =1,
(p1 + pyJvdv/de = — dp,ldz,

where the subscript i =1, 2 refers the corresponding parameters to the liquid and gas, respectively; ai, p;, pi,
and p{’ are the contents by volume, pressure, average density, and true density et the i-th phase; and v is the
velocity. We take as the equations of state of the phases

Pa=(y — 1) ey, 0575, uy=cy,T,, p}= const, (1.2)

where ¢y s uy, Ty, and y are the specific heat at constant volume, specific internal energy, temperature, and
adiabatic 2exponent: of the gas,

Instead of the equation used in [6] for the heat input to the second phase we use the heat-conduction equa-
tion for the bubble interior:

0 0.4 .
dT Py 4 Pa¥* 3T dp,

0,82 2 9 227 Ol EPy 1.3

Pl g = pgeE2 95 (Kz P38 ag) U -

where Cp, is the specific heat of the gas at constant pressure; y is the spherical Euler coordinate, 0 <y <R (t);
A5 is the thermal conductivity of the gas; and £ is the Lagrangian coordinate, 0 =¢ <R;. The subscript 0 refers
to the equilibrium state ahead of the wave. For small volume contents of the gas {,< 0.1) and not very strong
shocks (pe/py< 10), as shown in [7], the boundary condition on the bubble surface can be stated in the form
THR, t) =T, since the liquid has a much greater thermal conductivity and a much smaller thermal diffusivity
than the gas.

The equation of continuity for the gas in Lagrangian coordinates is

oy __ Pooft (1.4

[ ngz

The pressure in the bubble is assumed to be homogeneous (homobaricity condition [7]); this condition is
guaranteed when the radial velocity of the bubble walls is well below the velocity of sound in the gas.

It will be helpful in what follows to use the pressure differential equation obtained as the integral of Eq.
(1.3) subject to the above-stated assumptions and boundary conditions:

vdpyfdz = — [3(y — 1)/Rlgp — (3yps/R)vdR/dz, (1.5)
where qp is the heat flux from the bubble into the liquid.

The gas pressures and radii of the bubbles must be related by a deformation compatibility condition,
Such a condition in the given case is the Rayleigh equation for pulsations of a single spherical bubble in an un-
bounded incompressible liquid. For the case in question it has the form
Rudw)dz + 3wY2 + 4vyw/R=(p, — py — 20/R)/o", (1.6)
vdR!dr = w,

where w is the radial velocity of the bubble wall and v, ¢ are the viscosity coefficient of the liquid and the co-
efficient of surface tension.
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The system of equations is closed. We transform to dimensionless variables and parameters:

P, = PPy V= v/a,., W = wlay, a2 = pylp1q am
X = 2/R,, nw = &/Ry, r = RIR,, § = y/R,,
0; = T,/Ty, S = 20/Rypyy, ® = vi/Roay,
M, =p,/py, My = Pgoazo/f)‘,’oam, 2; = P?/P?O-‘

The system has first integrals deduced from (1.1):

a,V = ay Vy, 2,0,V = ag ¥V,

1.8
alOVOV(i'*‘]”?.o)'*'Pl:alOV%(1+M20)+Plo' @8

It is essential to note that a bubble structure exists for o 4% 0.1, while at moderate pressures (p 10 to
30 bars) the ratio of the true densities of the phases ( p3) /pJ«1 (for p=1bar, the ratio (pg )/pl ~107 ). In this
case the mass content of gas can be neglected in comparison with unity, because

Mo = (03 [03) 0 (@) < O(as) < 1. (1.9)
Using (1.7) and (1.9), we obtain from (1.3)-(1.6) a system of equations in the dimensionless variables
dridX = WIV, 38/0n = (1/8)%/2,; {1.10)
dW/dX = (P, — P, — 1,5W? — 'S/r — 4xWir)irV; (1.11)
dP,/dX = — (3(y — 1)/Pya,rV)gg — (3yPy/r)dridz; (1.12)
a0 _Dyriz, 2,04 08, ?—1 _4dP,,
7)_(’ o"mV"]2 ‘7"] ( :]2 5‘1) + ¥ re 'd_Xz’ (1.13)
B,(r, X) = 1. (1.14)

The remaining variables not involved in the derivative sign are given by finite relations deduced from (1.2) and
(1.8):

Py =2,0,;, V = Vo{ay T %20/25),
@y = Qgl( @192y + &), Py = Py — a ) Vl(V — V).

Next we consider the structure of a plane stationary shock wave, in which the medium goes from an
initial equilibrium state (for which a subscript 0 is attached to the corresponding parameters)

V=Vo,W0=0,em=elo=1,Pw=Plo+S=i
to a new equilibrium state (indicated by subscript e)
V= Vc’ We =0, 6,, = 6, = 1, Py, = Py, + S/T,. (1.15)

The values of the parameters in state e are determined from finite relations according to the specified initial-
state parameters:
Qagr Vs Mo, Proy 239 = Zgp = Tg = 8y = 1.
On the basis of (1.15) the required relations assume the form
AieVe = %33V, Ao Vetoy = anyVy, oy + aze = 1,
2y, =P, =173 @, Vo(Vi—Ve)=P1,— Py,

We consider the case of small influence due to capillary effects (S«1) an assumption that is fully justified for
not too small bubbles (Ry~1 mm) in application to the experiments of [2, 3]. Then from the foregoing relations
we obtain

2
Pe = Ple = pze = aloazoVO-

§2. Calculation of the Shock Structure

To analyze the asymptotic behavior of the system in the vicinity of the initial equilibrium state we linear-
ize the system with respect to the values of the parameters at the point O and seek a solution in the form of an
exponential function decaying as X — — (the spatial coordinate of the point O is X=~w, and the coordinate of
the point e is X =+o0):
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V="V,+ Ay exp (rX), r =1 + 4, exp (hX),
W = Awexp (hX), P;=1+ Ap exp(hX), 2.1
z,= 144, exp(hX), ©O,=14 Ap,exp(hX (i=1,2), Reh >0y,
2 + 2 p ) 2 2 ) ) ( > )

After linearization the system of fundamental equations is written

hA]P == Aw/Vo; (22)

hAw = (Ap, + a1V o Av — 4 Aw)/V,y; 2.3)
0 .

hAp, = 3y {2 (Taﬁ‘)n=1 / V,Pe— hA,], @.4)

hdo, = 1t hdp, + 2v*Ae,/V, Pe; @.5)

AP, = Az, + Ae,; : (2.6)

Ay = — azoVoAzn Ap, = — a,V 4y, ' 2.7

where V20 =@, 5, +2@, /1 and Pe=2R /D, is the Peclet number. -

The solution of (2.5) satisfying the boundary condition (1.14) and the condition of finite temperature at
the center of the bubble has the form

Ao, = Ash (nG") [0+ [3(y — 1)/G] (4B — GA,), @.8)
where

G= hV,Pe/2; B = GY* chG¥> — shGY2; 2.9)
A =3(y — 1)4,/[shG¥2 + 3(y — 1)B/Gl.

We have thus obtained a single-parameter family (the perturbation amplitudes of all the parameters can
be expressed in terms of one of the amplitudes). The condition for the existence of a nontrivial solution yields
the transcendental equation

ht = 3P, — 3y/[1 + 3 (v — 1) By/G] — 4xV b, (2.10)

in which B4 =G1/2%coth G1/2- 1; capillary effects are neglected (S« 1), as is the mass content of the gas phase
(Mgg<<1) in the derivation of this equation.

For low-viscosity liquids and not too small bubbles (R;~1 mm), in application to the experiments of
[2, 3], n «1. We can therefore drop the last term on the right-hand side of Eq. (2.10). In this case Eq. (2.10)
can be rewritten

- @(A) =4 + BA(A2 — A) + C(A¥? coh AV2 — 1) = 0, @.11)

where A =hV,Pe/2; A =(3/4) PoPe% B=(3/4)yPe% c=3(y-1). The function ¢ (A) is meromorphic because ¢ 1A=
A1/2 coth A1/2 is an analytic function.

For a solution of the type (2.1) only roots of (2.11) with a positive real part are acceptable, We now prove
the existence and uniqueness of a root of (2.11) in the right half-plane.

It is known [8] that for a meromorphic function
N — P = A, arg @())/2x, (2.12)
where N is the number of zeros and P is the number of poles in the domain bounded by a closed curve C.

We take the contour illustrated in Fig. 1. We compute Agarg ¢ (A) for this contour as 8 —+ o, £—0:

‘ Ac arg @(A) = Ay + Ays -+ Asp -+ App - 2.13
On the arc LNas § — + =
@(A) = A + O(1). (2.14)
On the arc SP
@(A) = (1 = B/A + CI3]A + O(R). 2.15)

From (2.14) and (2.15) we obtain for 1-B/A+C/3=0
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Ay + Agp = O(1); (2.16)
Ans arg @(A) = Apy arg ¢(3), (2.17)
since ¢(A) is such that
o(1) = (4). (2.18)
We infer from (2.12)-(2.18) that
N — P = — Ap, arg o(})/z. (2.19)

Introducing the parameter A = iy%2 for the segment OL, we can show that
&) = (1/C) Re (&) = —2 + y(sh y + sin y)/(ch y — cosy) >0 (2.20)

for y = 0. From (2.14), (2.15), (2.19), and (2.20), inserting the values of A, B, and C and acknowledging that
@(2) has only one positive A =+ VA in the right half-plane, we obtain

For compression waves (Pg > 1) the indicated root in the right half-plane exists (N = 1), This root,
unique in the right half-plane, of the equation ¢(\) = 0 is real, because ¢()) has the property (2.18), whence we
infer that if A is a root, when A is also a root of the equation, ®(A) = 0, The root of Eq. (2.10) is found with the
aid of a computer,

The dependence of the root of the (2.10) on the wave intensity Py is given in Fig. 2 for various Péclet
numbers. In the adiabatic case Eq. (2.10) goes over to the quadratic equation

N =051 + sgu(P, — 1)].

from which it is clear that the indicated root exists in the case only for Pg > y. With heat transfer present the
root exists for all P, > 1.
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The integral curves of the system of fundamental equations admit shifting along the X axis, We therefore
fix a certain value of the dimensionless bubble radius r at X = 0, choosing r close enough to unity so that a
linear solution will hold in the domain X <0. We then determine the values of the other parameters at X=0
from (2.2)-(2.9) on the basis of the perturbation amplitude of the bubble radius and the value of the root of Eq.
(2.10).

These quantities determine the initial conditions for numerical solution of the nonlinear problem in the
domain X > 0. The problem is solved by a finite-difference method in Lagrangianvariables; the interior of the
bubble is partitioned into spherical layers, and by analogy with [7] a boundary condition at the surface in the
form Ty(R, t) =T, is used. The heat-input equation (1.13) now goes over to a system of n ordinary differential
equations (where n is the number of layers), and the continuity equation (1.10) into a system of n algebraic
equations. In this way we arrive at the Cauchy problem for the system of (n + 3) ordinary differential equations
(1.10)-(1.13). The problem is solved on a computer by the Runge ~Kutta method. The number of layers is
varied and finally chosen on the basis of the condition that the end results are scarcely affected by increasing
that number. - -

The equilibrium states before and after the shock wave correspond to the points O and e, which are
singularities of the system of differential equations. An analysis of the asymptotic behavior as X —~ «» is
necessary in order to cope with the singularities,

We have computed variants of the shock structure in a 1:1 glycerin—water solution containing air bubbles
in application to the experiments of Noordzij {2] and the corresponding calculations of [6].

The following values are used for the thermodynamic parameters:

pgﬂz: 1126 kg/msa ’Vl = 75' 10—5 mzv/SEC,
Ty = 300°K, cy,== 746 m?/sec? - K,
hp = 2.42.102kg -m/sec®- K, y = f.4.

Figure 3 gives as an example the computed structure of a shock wave with the following values of the
parameters determining the initial state of the mixture (wave intensity Pg=pg/Mg, wave velocity v, given rela-
tive to the medium ahead of the shock front):

Re.= 1.55 mm, a,, = 0.0423,
po = 0.358 bar, P, = 3.32,
a, = 5.64m/sec, Vo == 9.05 (v; = 30.9 m/sec);

the dashed curve corresponds to the pressure P, in the bubbles, and the solid curve to the pressure P, in the
liquid.

It has been shown [5] that in strong shocks (Po ~2 or 3) each bubble breaks into two identical bubbles at
the instant of the first maximum compression of the bubbles. This effect is included in the computations; a
discontinuity is introduced at the instant of first maximum compression of a bubble, where the bubble radius is
decreased by a factor of 271/3 and the rest of the parameters are left unchanged (the radial velocity of the
dividing and already divided bubbles at the instant of breakup is equal to zero). This scheme for taking account
of the breakup of bubbles in the wave is greatly simplified. It does not allow for the energy variation in the
system during breakup or for energy exchange with the wave. However, it does not contradict the energy
balance in the system (for the case in which surface tension can be neglected). Thus, at the instant of maxi-
mum compression the energy in the system is the sum of the kinetic energy of macroscopic motion {(p; + p?)Vz,/z
and the bubble internal energy, which is determined by the pressure in them, while the pulsation energy at this
instant is equal to zero. The first two components of the energy (for fixed values of all other parameters) do
not depend on the disperseness of the second phase (bubble sizes), and the third component is equal to zero at
the instant of breakup.

The shock structure in Fig. 4 is plotted for the following values of the parameters (Nu =2Rqg /A oATy~
(TQ )1 is the dimensionless heat flux, i.e., the Nusselt number): .

Ry = 1.47i0, a5 = 0.0246, po = 0.902 bar,
P, =132, a, = 8.95 m/sec, Vo, = 7.42 (vo = 66.2 m/sec).
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Figure 3 gives an example of a shock wave with a pulsation structure, and Fig. 4 does the same for a
monotonic structure. In Fig. 5 we have the temperature dlstrlbutlon inside air bubbles in a weak shock wave at
various distances.

The results of the present study demonstrate the applicability of the approximate expressions used in an
earlier paper [6] for the interphase heat-transfer coefficient within the context of the two-temperature model.
In the case of a shock wave having a pulsation structure (see Fig. 3) the dimensionless heat flux (Nusselt num-
ber) also fluctuates, even assuming negative values in certain time intervals (due to the inception of "tempera-
ture sinks" in the bubble, as shown by Nigmatulin and Khabeev [7]). However, the period-average value of the
Nusselt number and the heat transfer between the bubble and the liguid on the average are well described by the
approximate expression of [6]. The radius —time curves calculated by means of Eq. (1.3) and the approximate
expressions of [6] practically coincide (they have the same frequency and pulsation decay rate). In the case of
a wave having a monotonic structure the value of the Nusselt number initially coincides with the value used in
6] (Nu=30), but thereafter it exhibits only order-of-magnitude agreement. This fact, however, does not incur
any appreciable errors in the results, and it permits considerable simplification of the computations, an asset
that is particularly important in the study of nonsteady waves.

The authors are grateful to R. I. Nigmatulin for stating the problem and devoting attention to the work, as
well as to A. G. Petrov for a useful discussion.
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